Maximization of Neumann Eigenvalues

نویسندگان

چکیده

This paper is motivated by the maximization of k-th eigenvalue Laplace operator with Neumann boundary conditions among domains $${{\mathbb {R}}}^N$$ prescribed measure. We relax problem to class (possibly degenerate) densities in $$\mathbb {R}^N$$ mass and prove existence an optimal density. For $$k=1,2$$ , two problems are equivalent maximizers known be one equal balls, respectively. $$k \ge 3$$ this question remains open, except dimension space, where we that maximal correspond a union k segments. result provides sharp upper bounds for Sturm-Liouville eigenvalues proves validity Pólya conjecture {R}$$ . Based on relaxed formulation, provide numerical approximations $$k=1, \dots 8$$ {R}^2$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximising Neumann eigenvalues on rectangles

We obtain results for the spectral optimisation of Neumann eigenvalues on rectangles in R with a measure or perimeter constraint. We show that the rectangle with measure 1 which maximises the k’th Neumann eigenvalue converges to the unit square in the Hausdorff metric as k → ∞. Furthermore, we determine the unique maximiser of the k’th Neumann eigenvalue on a rectangle with given perimeter. AMS...

متن کامل

Homogenization of the Eigenvalues of the Neumann-poincaré Operator

In this article, we investigate the spectrum of the Neumann-Poincaré operator associated to a periodic distribution of small inclusions with size ε, and its asymptotic behavior as the parameter ε vanishes. Combining techniques pertaining to the fields of homogenization and potential theory, we prove that the limit spectrum is composed of the ‘trivial’ eigenvalues 0 and 1, and of a subset which ...

متن کامل

Lower Bounds for Eigenvalues of Schatten-von Neumann Operators

Let Sp be the Schatten-von Neumann ideal of compact operators equipped with the norm Np(·). For an A ∈ Sp (1 < p <∞), the inequality [ ∞ ∑ k=1 |Reλk(A)| ] 1 p + bp [ ∞ ∑ k=1 | Imλk(A)| ] 1 p ≥ Np(AR)− bpNp(AI) (bp = const. > 0) is derived, where λj(A) (j = 1, 2, . . . ) are the eigenvalues of A, AI = (A − A∗)/2i and AR = (A + A∗)/2. The suggested approach is based on some relations between the ...

متن کامل

Minimization of the zeroth Neumann eigenvalues with integrable potentials

For an integrable potential q on the unit interval, let λ0(q) be the zeroth Neumann eigenvalue of the Sturm–Liouville operator with the potential q. In this paper we will solve the minimization problem L̃1(r) = infq λ0(q), where potentials q have mean value zero and L1 norm r . The final result is L̃1(r)=−r/4. The approach is a combination of variational method and limiting process, with the help...

متن کامل

Eigenvalues of the Neumann-poincaré Operator for Two Inclusions

In a composite medium that contains close-to-touching inclusions, the pointwise values of the gradient of the voltage potential may blow up as the distance δ between some inclusions tends to 0 and as the conductivity contrast degenerates. In a recent paper [9], we showed that the blow-up rate of the gradient is related to how the eigenvalues of the associated Neumann-Poincaré operator converge ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2023

ISSN: ['0003-9527', '1432-0673']

DOI: https://doi.org/10.1007/s00205-023-01854-z